

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Penning Interaction Ne-As and Optogalvanic Signal Deformation

D. Z. Zhechev^a

^a Institute of Solid State Physics, Sofia, Bulgaria

To cite this Article Zhechev, D. Z.(1992) 'Penning Interaction Ne-As and Optogalvanic Signal Deformation', *Spectroscopy Letters*, 25: 4, 507 — 511

To link to this Article: DOI: 10.1080/00387019208021525

URL: <http://dx.doi.org/10.1080/00387019208021525>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PENNING INTERACTION Ne-As AND OPTOGALVANIC SIGNAL DEFORMATION

Key Words: Optogalvanic Effect, Hollow Cathode
Discharge, Penning Interaction

D.Z.Zhechev

Institute of Solid State Physics, BAS, Blvd.Trakia 72
1784 Sofia, Bulgaria

ABSTRACT

The optogalvanic response of Ne-As hollow cathode discharge plasma is found to be deformed depending on the discharge current. Penning Ne-As interaction is supposed and spectroscopically confirmed.

INTRODUCTION

The use of Hollow Cathode Discharge (HCD) as Optogalvanic (OG) detector stimulates further investigations on the effect of resonant light on plasma conductivity. Here a deformation of the real OG signal in HCD is reported.

EXPERIMENT

A Ne/As HCD spectral lamp ("Pye Unicam") is irradiated by He-Ne laser (632.8nm, $1.15\mu\text{m}$ and $3.39\mu\text{m}$). In addition as an illuminating source a filament lamp with

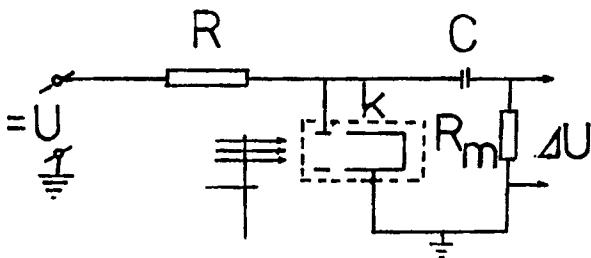


Fig.1. Schematic setup

a high resolution monochromator is used. In this way some $1s_i-2p_j$ transitions of neon atom are influenced. A standard OG scheme (Fig.1) detects the change ΔU of the cathode voltage drop U .

RESULTS AND DISCUSSIONS

The OG signals ΔU v.s. discharge current i_d are detected. In the vicinity of $i_d=6\text{mA}$ identical signals (Fig.2) for the three laser lines are observed. The form and i_d localization of the peaks in Fig.2 are found to be independent on the incident light frequency. This fact gives rise to doubt about the OG nature of response $\Delta U(i_d)$ near $i_d=6\text{ mA}$. The following irradiation by spectral lines of $1s_i-2p_j$ transitions (640.2 nm, 594.5 nm, 540.0 nm, 607.4 nm, 626.6 nm, 585.2 nm) confirms the nonoptogalvanic character of the Ne-As plasma reaction at $i_d=6\text{mA}$. The same peak is detected when the lamp is illuminated by the full or partial frequency emission of a Ne/Al lamp. One should note that the metastable 3P_2 neon level irradiated as a low one forms at $i_d \neq 6\text{mA}$ a real OG signal opposite in sign to the other ones from $1s_i-2p_j$ transitions and

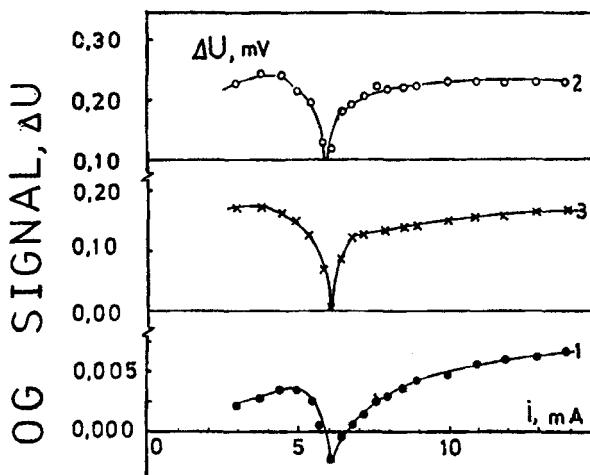
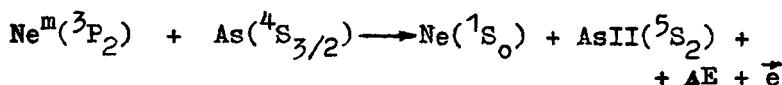



Fig.2. Optogalvanic response of Ne/As lamp ("Pye Unicam"): 1- 632.8 nm; 2- 1.15 μ m; 3- 3.39 μ m.

this sign is specific for the metastable level irradiated.

Thus the reason for this light frequency nonselectivity should be a more general one and should be looked for as a bulk Ne-As plasma effect. The closeness between the metastable $\text{Ne}^m(^3P_2)$ and $\text{AsIII}(^5S_2)$ levels¹ (Fig.3) is the reason for a Penning process:

/1/

increasing the plasma conductivity. A spectral proof for the process /1/ could be the behaviour of the relevant line intensities. Fig.4 shows the AsIII 191.29 nm ($^3P_2 - ^5S_2$) and AsI 193.7 nm ($^4S_{3/2} - ^2D_{3/2}^0$) spectral line intensities I_α and I_β respectively as

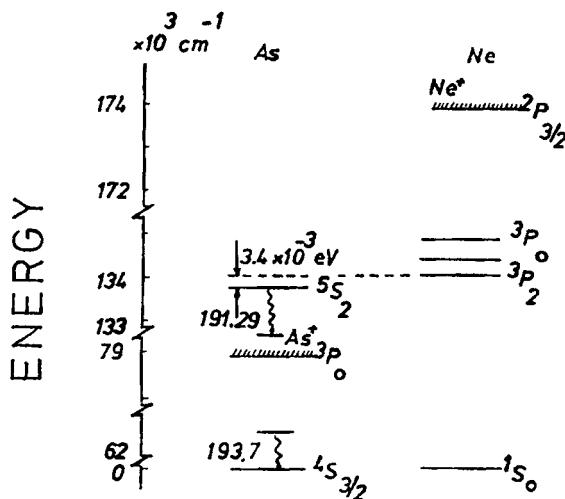


Fig.3. Diagram of the interacting Ne, As and As⁺ levels.

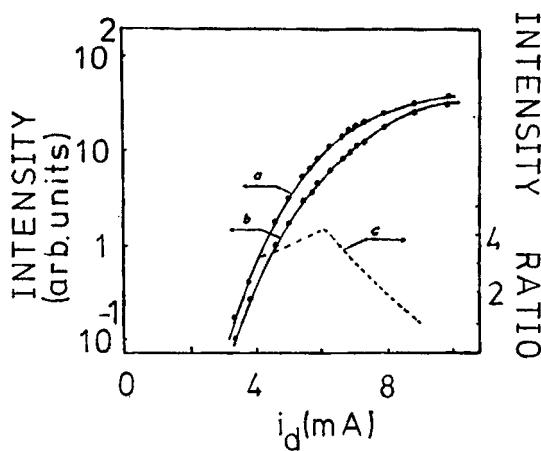


Fig.4. Intensity of AsII 191.29 nm (a) and AsI 193.7 nm (b) spectral lines v.s. discharge current in Ne/As lamp ("Pye Unicam"); c - ratio of the intensities.

well as their ratio I_α / I_β . The upper level of AsII 191.29 nm is populated additionally by the process /1/ creating As⁺ ions of 4s4p³⁵S₂ state. The other line intensity I_β is not connected with the aforementioned process directly. Then the ratio I_α / I_β should be sensitive to any selective change of AsII⁵S₂ level population. Indeed, curve c (Fig.4) illustrates a peak of the ratio at $i_d = 6\text{mA}$ where the Penning process takes place. The correlation between $\Delta U(i_d)$ and $I_\alpha / I_\beta = \gamma(i_d)$ near 6 mA is an indication that both are based on process /1/ and also that the peaks can not be identified with the real OG effect according to Ref.2,3.

CONCLUSION

The observed galvanic effect of Ne-As HCD plasma deforms the real optogalvanic response and limits its analytical possibilities. We have detected such a deformation of the time depending OG effect too and its appearance will be analyzed.

REFERENCES

1. A.A.Radzig and B.M.Smirnov, Parameters of Atoms and Atom Ions, Energoatomizdat, Moskva (1986)
2. F.M.Penning, Physica, 1928; 8: 137
3. R.B.Green, R.A.Keller, G.G.Luther, P.K.Schenek and J.C.Travis, Appl.Phys.Lett. 1976; 29: 727

Date Received: 12/03/91
Date Accepted: 01/07/92